
Urban park adjacent to university campus

UAV deployment for CO2 flux estimation in a mid-size city
Madeleine O’Brien; Natalie Schultz; Xuhui Lee

Yale School of Forestry & Environmental Studies, New Haven, CT

Urban areas produce a disproportionate amount of CO2 emissions 
worldwide, and better understanding and quantifying these emissions is 
crucial to mitigating them. However, with current tools, scientists possess 
limited ability to quantify CO2 emissions on small scales and to resolve 
intra-city variation in CO2 flux. 

Existing satellites that measure atmospheric column CO2 lack spatial 
resolution to de-aggregate CO2 patterns within cities. 

Municipal emission inventories present difficult-to-quantify uncertainties, 
and many inventory methodologies do not account for carbon sinks (like 
green spaces) that may affect a city’s CO2 flux. 

Gas flux models based upon eddy covariance (EC) calculations often 
assume homogenous surfaces, which clearly does not hold in complex 
urban topography. Perhaps as a result, EC data are most often collected on 
undeveloped land. 

Background

Calibration data collection: The K30 was placed 
adjacent to a high-precision CO2 analyzer (Los Gatos 
Research analyzer) and a meteorological instrument 
(iMet XQ2) and left undisturbed in an unoccupied room 
for 13 days to record ambient air from a propped-open 
window. K30 values appeared lower than LGR values by 
8.61ppm on average in this period.

Calibration of Low-Cost CO2 Sensor 
• When compared to a high-precision CO2 sensor, our low-cost 

sensor originally exhibited a RMSE of 5.453 ppm. Factory-
stated accuracy of the low-cost sensor is +/- 3% or 30 ppm.

• By calibrating our low-cost sensor against the high-precision 
LGR, and accounting for sensor response to weather 
variables, we reduced the RMSE of recorded CO2 values to 
3.806 ppm.

• Determining proper sensor placement on UAVs is high-
priority for anemometers and temperature sensors, medium-
priority for CO2 sensors, and lower priority for humidity and 
pressure instruments. 

• We observed a gradient of ~20 ppm between 10 and 25 
meter altitude.

Conclusions

• Fly transects over different land cover types, at different 
times of day, to compare CO2 values

• Refine the assumptions used in calculating CO2 flux from CO2

concentrations

• Deploy platform adjacent to eddy covariance tower to 
directly compare flux estimates

• Estimate flux footprint areas, to examine what mix of land 
cover types are included in the platform’s source area

Future Work

Instrument Testing & Placement
Influence of measurement height: Mean CO2

concentrations were lower on average over urban 
parkland. The measured CO2 gradient was smaller 
than expected—concentrations at 10m  were 
~20ppm higher than at 25m.

Relative 
humidity
decreases with
height, while
temperature
responds less
linearly.

Experimental Flights

Measurement variation with wind:

Measured CO2 concentrations 
exhibited more stability in higher 
ambient wind (SD 4.87 at the 
batting cages vs. 19.5 at the 
parking lot).

Both flights still produced very 
similar mean CO2 values (411.9 vs. 
412.1 ppm).
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Anemometer: TriSonica Mini Wind + Weather Sensor
Rotor wind can interfere with 
measurements, but mounting an 
instrument on a boom too far from 
UAV’s center of gravity may present 
safety hazards. Anemometer was 
mounted atop UAV on an 
adjustable-height platform. Wind 
speeds were recorded for 5 min 
intervals at 13 heights. 30 cm above
the drone presented the best compromise.

CO2: K30 Fast Response Sensor
To estimate effect of rotor wind, sensor was 
mounted on a grounded UAV, and CO2 data were 
collected while alternating rotors on-and-off for 5 
min and 20 min intervals. Rotor wind increased 
the SD of CO2 values (5.9 to 9.1), but mean CO2

values were not significantly different with or 
without rotors (P=0.08).

Temp, Humidity, & Pressure: iMet XQ2
Placed on the side of the UAV, pressure and humidity 
do not significantly differ when rotors are on (p=0.62 
and 0.41). Air temperatures were significantly cooler 
with rotors-on (p=0.00), but this requires re-testing.

Onboard Raspberry Pi 
runs Python script 
that controls data 
collection and storage 
from anemometer 
and CO2 sensor.

Calibration correction equation: Raw K30 data were fed into a multivariate regression model 
(K30raw ~  LGR + Pressure + Air Temp + Relative Humidity) to quantify offset from the LGR and 
how weather factors affect instrument performance. Coefficients from the linear model were 
used to assemble a “correction equation” that could be applied to future K30 data collected in 
the field. 

UAV: DJI Matrice 100
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Background wind 
speed measured at 0, 
21, and 45cm.

Difference between 
K30 and LGR looks 
larger towards end of 
experiment; K30 drift
should be evaluated?

K30 and LGR exhibit 
strong linear 
relationship without 
corrections (R2 = 0.97)


