ArcFootprint

A flux footprint estimation tool for ArcGIS Desktop

Mads O'Brien
FES754: Geospatial Software Design

19

December 20

Table of Contents

oY oY L1 ' oo U R 2
=Y T o L3R 3
TOO N IMPULES ...ttt ettt h ettt h e et e s bt ea e e be s bt e st e e bt e at et e eheeabesbeeat et e sbeemte bt satentenbeeneas 4
TOOI OUEPULS ...ttt ettt h et bt ea e b s bt et e s bt e at et e ebe et e sbeeatebesbeentenbeeatenbesbeeneas 5
(0 = g o Yo I =T U] Y-SR 6
Demonstration 1: Yellowstone fIUX tOWENcooeiiiiiieiiicee e st 7
Demonstration 2: NeW Haven drone ..ottt ettt st st be e 8
Limitations @and NeXE SEEPSc.coiiiiiiiiii ettt bttt b e sh et b e st ae et nees 10

Annotated sc

] OO OO OO OSSO OSSPSR PT YRR PR PR 11

ArcFootprint for ArcGIS | Page 2

Introduction

What is a flux footprint?

When earth scientists attempt to estimate
greenhouse gas emissions, they aim to
calculate the flux of a substance—the
amount of that substance flowing from a unit
area over a unit time. A question that may
arise is, “Where did this carbon dioxide I'm
estimating come from, exactly?”

A FluxTower

One solution: Generate a flux footprint, a s 85% Flux

polygon describing the source area of gas, - S Boundary
heat, or water given off by a surface that is 50% Flux
detected by a sensor. For example, in the : Hotwy
figure at right,* the red line designates that : A

50% of the instantaneous gas measurements £ . G

taken by a sensor atop a tower have originated from this reglon on the ground and have been blown
to the sensor by the wind. Similarly, 85% of what the sensor “sees” lies within the yellow boundary.
Variables like wind speed and wind direction can be used to “back-calculate” where gusts of air
measured by the sensor have originated from.

Numerous software programs exist for estimating flux footprints from observational gas data.?
However, many of these footprint estimation tools:

1) rely on proprietary or standalone software, often sold by the same companies that
manufacture the (pricey) instruments used to collect flux measurements;

2) require relatively advanced programming skills, particularly when the tools are free or open-
source;

3) do not generate outputs compatible with common GIS software like ArcMap, and multi-
step conversions increase the lag time between footprint calculation and comparing footprint
extent with other spatial datasets.

Goals of this project
e Build a user-friendly, point-and-click ArcToolbox tool for generating spatial extents of flux
footprints (as shapefiles), based upon meteorological variables collected from gas sensors.
e Construct separate polygons for each source area (50%, 90%, etc.), making it easy for the user
to run subsequent Zonal Statistics within each zone.
e Create atool that will not only benefit my own academic research, but hopefully benefit others
conducting meteorological research as well.

* Figure adapted from Ferster, C.J., Trofymow, J.A., Coops, N.C., Chen, B., Black, T.A. and Gougeon, F.A., 2011.
Determination of ecosystem carbon-stock distributions in the flux footprint of an eddy-covariance tower in a coastal forest
in British Columbia. Canadian journal of forest research, 41(7), pp.1380-1393.

% See list of examples at fluxnet.fluxdata.org/2017/10/10/toolbox-a-rolling-list-of-softwarepackages-for-flux-related-data-

processing/

https://fluxnet.fluxdata.org/2017/10/10/toolbox-a-rolling-list-of-softwarepackages-for-flux-related-data-processing/
https://fluxnet.fluxdata.org/2017/10/10/toolbox-a-rolling-list-of-softwarepackages-for-flux-related-data-processing/

Methods

Scholars have formulated a variety of mathematical
methods to estimate flux footprints. ArcFootprint relies
upon the widely-cited method3 developed by Kljun et al
(2015),% which has (conveniently) already been
translated into a Python script.5 Essentially, the script
defines a single function, called FFP() for Flux Footprint
Prediction, that a user may insert in their own program.

The Kljun method'’s calculations generate a (non-
georeferenced) raster, where each pixel value represents
a percentage contribution—i.e., a single dark red pixel
contributes 0.000072% of the gas “seen” by a sensor.
This percent contribution raster is then the basis for
drawing “cumulative contour lines”: starting from the
highest pixel value, one can imagine an ellipse radiating
outward until all the pixels within that ellipse add up to
[XX]%

Simplified flowchart of ArcFootprint method

INPUTS

ArcFootprint for ArcGIS | Page 3

y [ml

2.700e-04

2.400e-04

2.100e-04

1.800e-04

1500e-04

1.200e-04

9.000e-05

6.000e-05

3.000e-05

0.000e+00

OUTPUTS

Sensor height

Source raster

Kljun

>

Model

Sensor northing

X,Y coords of
contour line

& easting

535335.55E
4851207.36 N

(100, -400)

Wind speed &

Add to sensor
coordinate

direction (at sensor)

Desired flux
boundary, i.e. 80%

535435.55 E
4950807.36 N

3 The Kljun model is the same one used in Tovi, a major Proprietary software for footprint modeling.

4Kljun, N., P. Calanca, M.W. Rotach, H.P. Schmid, 2015: A simple two-dimensional parameterisation for Flux Footprint

Prediction (FFP). Geosci. Model Dev., 8, 3695-3713. doi:10.5194/gmd

-8-3695-2015.

5> To download the original Flux Footprint Prediction source code, visit http://footprint.kljun.net/download 2.php

http://www.geosci-model-dev.net/8/3695/2015/
http://footprint.kljun.net/download_2.php

ArcFootprint for ArcGIS | Page 4

Tool inputs

First, a user must acquire gas observation data. One can download freely-available flux tower
datasets from websites like https://fluxnet.fluxdata.org/ or https://ameriflux.lbl.gov/. Alternatively, a
user could experiment with other above-the-ground gas sensors, such as measurements acquired
from a UAV. Ideally, a single footprint is estimated from data averaged over a half-hour period.

No matter how gas concentration data were collected, the user must possess the following variables:

L
& Flux Footprint Generator
% Measurement location Flux Footprint
| . Tl e
| Single-feature point shapefile where data were
% Cutput polygon . .
| collected. Must use a projected coordinate system.
Measurement height (meters) |
Height of sensor from the ground
Mean wind speed {m/s) |
Standard deviation of horizontal (not vertical)
b B | wind components over the time period
]
Mean wind direction {0-359) |
Here, zero degrees = north, 180 = south
Season of measurement
| Unknown ~ |
@ Source regions
[0 Selection of Spring, Summer, Fall, or Winter
[]30.0 selects a seasonally-appropriate estimate
E ;g'g for the atmospheric boundary layer height
[50.0 (Kljun model parameter)
Generate one or more flux footprints ‘ ‘
representing a XX% source area
Flux Footprint Generator Properties x
General Source Parameters Validation Help
Select All Unselect Al

import arcpy -~
class ToolWValidator (object) :
""" Class for wvalidating a tool's parameter wvalues
the behavior of the tool's dialog."™"

[Print model parameters to text file? (optional)

Output text file {op -nal)

def _ init (self):
"""Setup arcpy and the list of tool parameters.
self params = arcpy.GetParameterInfol)

def initializeParamsters(self):
""r"Refine the properties of a tool's parameters
Cancel En called when the tool is opened.™"™

return

When this box is checked, the output text file field = def updaterarametersisels):

"""Modify the walues and properties of paramete

is enabled, thanks to altering a bit of code in the validation is performed. This method is callec
. . . has been changed. """
tool’s Properties > Validation tab 1% self params[7] value — True:
self params[2] .enabled = True
else:

Thanks to this forum post!

) . self.params[8] .enabled = False
https://gis.stackexchange.com/questions/255622/how-to-

only-ask-for-a-input-if-checkmark-has-been-checked-arcgis- def updateMessages(self):
. """Modify the messages created by internal wali
w parameter. This method is called after interns
return v
€ >

Edit...

https://fluxnet.fluxdata.org/
https://ameriflux.lbl.gov/
https://gis.stackexchange.com/questions/255622/how-to-only-ask-for-a-input-if-checkmark-has-been-checked-arcgis-script-tool
https://gis.stackexchange.com/questions/255622/how-to-only-ask-for-a-input-if-checkmark-has-been-checked-arcgis-script-tool
https://gis.stackexchange.com/questions/255622/how-to-only-ask-for-a-input-if-checkmark-has-been-checked-arcgis-script-tool

ArcFootprint for ArcGIS | Page §
Tool outputs

Background outputs (not shown to user)
1) Percent contribution raster generated by FFP() function, like the one pictured on page 3
2) xrs and yrs, arrays of footprint boundary coordinates relative to a (0,0) origin. After translating
these “relative” coordinates to “on the Earth around the sensor” coordinates, the script
“connects the dots” to draw ellipses from these coordinates.

User outputs
1) The footprint polygon shapefile. When a user requests more than one source footprint to be
generated, each ellipse is drawn one at a time. Thus, the polygons overlap with each other, and
the area of each feature accurately represents the entire source area, not just the non-
overlapping portion.
2) Additional descriptive fields. The following fields are added to each output attribute table:

Table O x
HamdenFootprintsé X
FID Shape * footptAREA src_pct obs_point
3 0 |Pohvgon 2803380.2 50 |UMGeospatial_Software_Design'arcFoetprint_SampleData\HamdenDroneFlight.shp
1 (Polygon 12226 70 |UMGeospatial Software_Design\arcFoetprint_SampleData\HamdenDroneFlight.shp
2 |Pohygon 4091.29 50 |UMNGeospatial Software_DesignvarcFoetprint_SampleData\HamdenDroneFlight.shp
3 | Polygon 1487.95 30 |UMGeospatial_Software_Design\ArcFootprint_SampleData\HamdenDroneFlight. shp
4 | Polygon 338.803 10 |UMSeospatial_Software_Design\ArcFootprint_SampleData\HamdenDroneFlight. shp
M 4 1 » M E (0 out of 3 Selected)

HarndenFootprintsé

footptAREA —the area covered by the source region, calculated in the linear units used by the
footprint shapefile’s CRS (meters, feet, etc.)

src_pct — source percent; identifies each footprint feature with the source area it signifies (10%, 30%,
etc.)

obs_point — observation point; records point shapefile used as input to generate the footprint

If requested, a text file recording
model parameters used in the Fle £t Format View Melp

footprint estimation is written. MODEL PARAMETERS USED:

Measurement height: 20.0 m

Mean wind speed: 1.775 m/s

Standard deviation of lateral wind: 6.8 m/s

Mean wind direction: 68 degrees

Obukov length: -48.8

Season of measurement: Summer (June, July, Aug)

Planetary boundary layer height: 168@.0 m

Source regions: 1@;30;50;70;9@ percent

Measurement Location Coordinates X: 535335.558269 Y: 4951287.35994
CRS of input point: NAD_1983_UTM_Zone_12MN

Linear unit: Meter

U:\Geospatial Software_Design’\outputs\YellowstoneFootprints.shp
footprint created at 2020-81-13 28:24:43.466000

| VellowstoneFootprints_params - Motepad = O x

Ln 13, Col 112 100% Windows (CRLF) UTF-2

Other tool features

4 Folygn

"o |>u-

{1 out of 5 Selected)

se¥atara_point Arc. | 1o

Aatan

poink Are

Auto-conversion of linear units

The Kljun model generates footprint boundaries using relative meter
coordinates, at first. If a footprint vertex should be plotted 200m from a
sensor, but the input sensor location shapefile uses US Feet as a linear unit,
ArcFootprint will correct the relative coordinates and ensure the vertex is
plotted not 100 feet from the sensor, but the proper 328 feet.

ArcFootprint for ArcGIS | Page 6

Polygon drawing order to maximize
visibility

ArcMap renders shapes in the order that they
are listed within an attribute table. This
means that a larger polygon can overlap and
entirely obscure a smaller polygon (see purple
shapefile). ArcFootprint sorts the footprint
polygons in descending order by size; thus,
smaller polygons are drawn later and on top
of larger ones (see green shapefile).

Each polygon is complete (has no holes),
meaning shape areas are cumulative and
symbolization is easy. (See below!)

Demonstration 1: Yellowstone flux tower
Using sample flux tower data from Lewicki et al (2019), footprints were estimated for one half-hour

ArcFootprint for ArcGIS | Page 7

average.
Wind speed
Sensible heat Latent heat Monin-Obukhov variance in cross- Mean horizontal Mean horizontal
|Date Time flux flux CO2flux H20flux Friction velocity length wind direction wind speed wind direction
watts per watts per meters per square meters per meters per degrees from
local time: square meter square meter micromoles millimoles p second meters square second second north
5/12/2017 9:30 218.5 214.9 21.7 4.9 0.53 -48.18 147 4.27 171
5/12/2017 10:00 251.6 228.4 25.2 5.2 0.55 -47.88 167 4.94 167
5/12/2017 10:30 269.3 192.5 18.7 4.3 0.61 -61.15 1.66 5.37 169
5/12/2017 11:00 230.4 148.5 15.9 3.4 0.54 -47.45 177 4.95 171
5/12/2017 11:30 282.6 168.9 15.6 3.8 0.53 -37.71 2.02 4.99 175
5/12/2017 12:00 312.6 164 14.9 3.7 0.62 -54.7 2.33 5.5 173

&' Flux Footprint Generator

d x

Measurement location

Flux Footprint Generator

| U:\Geospatial_Software_Design\ArcFootprint_SampleData Y ellowstoneFluxTower.shp

Qutput polygon

| U:\Geospatial_Software_DesignputputsiYellowstoneFootprints. shp

Measurement height (meters)

Mean wind speed (m/s)

Standard dev. of lateral wind

Mean wind direction (0-359)

Season of measurement

| Summer {June, July, Aug)

Source regions

10,0
30.0
50,0
70.0
20,0

Select Al Unselect Al
Print model parameters to text file ? {optional)

Qutput text file (optional)

Add value

| U:\Geospatial_Software_Design'outputsYellowstoneFootprints_params. twt

M=

Cancel Environments. ..

<<

Hide Help Tool Help

6 Lewicki, J.L., Kelly, P.J., and Clor, L.E., 2019, Gas and heat emission measurements at Solfatara Plateau Thermal Area,
Yellowstone National Park (May-September 2017): U.S. Geological Survey data release,

https://doi.org/10.5066/P9gXOHUDO.

ArcFootprint for ArcGIS | Page 8

Demonstration 2: New Haven drone
Using data collected from my own field work?, flying a UAV with an onboard anemometer, footprints
were estimated from one 24-minute hovering flight.

Z! Flux Footprint Generator

Measurement location Flux Footprint

| U:\Geospatial_Software_Design\ArcFootprint_SampleData\HamdenDroneFlight.shp Generator

Output palygon
| U:\Geospatial_Software_Design'outputs \HamdenFootprints2.shp

Measurement height (meters)

Mean wind speed (m/s)

Standard dev. of lateral wind

Mean wind direction (0-359)

Season of measurement
| Fall (Sept, Oct, Mav)

Source regions
10.0
30.0
50.0
70.0
30.0

Select Al Unselect All Add Value
Print model parameters to text file ? (pptional)

Output text file (optional)
| U:\Geospatial_Software_Design\outputs \HamdenFootprints_params2. txt | B‘

Environments. .. << Hide Help Tool Help

7 O'Brien, M. and Schultz, N., unpublished data.

Table Of Contents B x ¥
8GE

= =F layers
(=] YellowstoneFlux Tower

= YellowstoneFootprints

a

[Basermnap

Table Of Contents

e

= = layers
=] HamdenDroneFlight

A
= HamdenFootprints
5]

= Basemnap
World Imagery

ArcFootprint for ArcGIS | Page 9

D R AR g
™l
..

Output footprints from Yellowstone (top) and New Haven (bottom), each with one footprint selected.

ArcFootprint for ArcGIS | Page 10
Limitations and next steps

1) Very approximate BLH estimates within the Kljun model, and only for northern hemisphere.
The height of the atmospheric boundary layer (BLH) has a non-trivial impact on how far gases can travel and
subsequently on flux footprints. BLH estimates presently in this tool® average over a lot of variation; the height
of this atmospheric layer can change hundreds of meters over the course of a day due to temperature. In
addition, the seasonality drop-down menu in my tool relies upon estimates from northern hemisphere seasons
(hot June, cold January) whereas southern hemisphere sites would be reversed.

Next step: | experimented with creating a global-scale, course-resolution raster of BLH in Google Earth Engine,
and averaging BLHs over 3 years of data (see image). When the user runs ArcFootprint, their sensor location
could be compared to the raster of BLH values like a spatial look-up table, to find the suitable BLH for that
season. However, | am not sure how to make the ArcFootprint tool “point” to this raster dataset without having
the user add it as an input.

2) Output footprints have no metadata.

Next steps: Rather than clutter the user's computer with text logs tying footprints back to input parameters, |
would prefer to write to the metadata of the footprint shapefile as it is created. ESRI's method for editing
metadata programmatically involves writing and editing XML metadata documents, which can be
accomplished in Python but may involve significant work.®

3) User must calculate wind variables (mean direction, SD of speed) themselves.

If a user has raw sensor data not yet averaged over a time interval (like a half hour), requiring the user to
calculate their own mean and standard deviation statistics on their data increases opportunities for human
error or misunderstanding tool instructions. Plus, it's an extra manual step, and who enjoys that?

Next steps: Add a widget in the tool dialog box that allows the user to identify a column in an attribute table (or
CSV) containing wind data from their sensor. The statistics of mean wind direction, mean wind speed, and
standard deviation of wind speed will be calculated automatically and inserted into the footprint estimation
model.

8 Current values estimated from Chu, Y., Li, J., Li, C., Tan, W., Su, T. and Li, J., 2019. Seasonal and diurnal variability of
planetary boundary layer height in Beijing: Intercomparison between MPL and WRF results. Atmospheric Research, 227,
pp-1-13.

9 See https://desktop.arcgis.com/en/arcmap/latest/manage-data/metadata/editing-metadata-for-many-arcgis-
items.htm#ESRI_SECTION1_35F23B7429E8484890058C3C7A797D6E

https://desktop.arcgis.com/en/arcmap/latest/manage-data/metadata/editing-metadata-for-many-arcgis-items.htm#ESRI_SECTION1_35F23B7429E8484890058C3C7A797D6E
https://desktop.arcgis.com/en/arcmap/latest/manage-data/metadata/editing-metadata-for-many-arcgis-items.htm#ESRI_SECTION1_35F23B7429E8484890058C3C7A797D6E

ArcFootprint for ArcGIS | Page 11
Annotated script

ArcFootprint, version 1.0
Created December 2019 by Mads O"Brien

This tool estimates a flux footprint based on a user-provided measurement location and
various meteorological observations.

The tool generates a shapefile that contains one or more polygon features, each
representing the area from which x% of a gas sensor®s measurements originate.

Specify the following parameters in the ArcTool script:

DISPLAY NAME DATA TYPE DIRECTION pi coge block outined in ORANGE s taken from
Output polygon Shapefile Output Kljun et al; my additions are highlighted in YELLOW.
Measurement height Double Input The rest of the script is my own.

Mean wind speed Double Input

Mean wind direction Long Input FILTER: O - 360

Season of measurement String Input FILTER: Value list (see
"seasondictionary” variable)

Source regions Double Input

Print model parameters? Boolean Input * optional

Output text file Text file Output * optional

NOTE: the FFP() function in the following script is almost entirely written by Gerardo
Fratini and Natascha Kljun. 1 have borrowed excerpts of it within this tool.
Original metadata below:

Derive a flux footprint estimate based on the simple parameterisation FFP

See Kljun, N., P. Calanca, M.W. Rotach, H.P. Schmid, 2015:

The simple two-dimensional parameterisation for Flux Footprint Predictions FFP.
Geosci. Model Dev. 8, 3695-3713, doi:10.5194/gmd-8-3695-2015, for details.
contact: n.kljun@swansea.ac.uk

FFP Input
zm = Measurement height above displacement height (i.e. z-d) [m]
z0 = Roughness length [m]; enter None if not known
umean = Mean wind speed at zm [m/s]; enter None if not known
Either zO0 or umean is required. If both are given,
z0 is selected to calculate the footprint
h = Boundary layer height [m]
ol = Obukhov length [m]
sigmav = standard deviation of lateral velocity fluctuations [ms-1]
ustar = friction velocity [ms-1]
optional inputs:
wind_dir = wind direction in degrees (of 360) for rotation of the footprint
rs = Percentage of source area for which to provide contours, must be between 10%
and 90%.
Can be either a single value (e.g., "80") or a list of values (e.g., "[10,
20, 301"

Expressed either in percentages (''80") or as fractions of 1 ("'0.8").
Default is [10:10:80]-. Set to "None"™ for no output of percentages
nx = Integer scalar defining the number of grid elements of the scaled footprint.
Large nx results in higher spatial resolution and higher computing time.
Default is 1000, nx must be >=600.
rslayer = Calculate footprint even if zm within roughness sublayer: set rslayer = 1
Note that this only gives a rough estimate of the footprint as the model is
not
valid within the roughness sublayer. Default is O (i.e. no footprint for
within RS).
z0 is needed for estimation of the RS.
crop = Crop output area to size of the 80% footprint or the largest r given if
crop=1

ArcFootprint for ArcGIS | Page 12

fig = Plot an example figure of the resulting footprint (on the screen): set fig =
Default is O (i.e. no figure).

FFP output
x_ci_max = x location of footprint peak (distance from measurement) [m]

x_ci = x array of crosswind integrated footprint [m]

f_ci = array with footprint function values of crosswind integrated footprint [m-1]
x_2d = x-grid of 2-dimensional footprint [m], rotated if wind _dir is provided

y_2d = y-grid of 2-dimensional footprint [m], rotated if wind_dir is provided

f _2d = footprint function values of 2-dimensional footprint [m-2]

rs = percentage of footprint as in input, if provided

fr = footprint value at r, if r is provided

Xr = x-array for contour line of r, if r is provided

yr = y-array for contour line of r, if r is provided

flag_err = 0 if no error, 1 in case of error

created: 15 April 2015 natascha kljun

translated to python, December 2015 Gerardo Fratini, LI-COR Biosciences Inc.
version: 1.3

last change: 08/12/2017 natascha kljun

Copyright (C) 2015,2016,2017,2018 Natascha Kljun

HHAH

#%% Define FFP Function

def FFP(zm=None, z0=None, umean=None, h=None, ol=None, sigmav=None, ustar=None,
wind_dir=None, rs=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8], rslayer=0,
nx=1000, crop=False, Ffig=False):

import numpy as np
import sys
import numbers

m
H

Input check
flag_err = 0

Check existence of required input pars
if None in [zm, h, ol, sigmav, ustar] or (zO is None and umean is None):
raise_ffp_exception(1)

Define rslayer if not passed
if rslayer == None: rslayer ==

Define crop iIf not passed
if crop == None: crop ==

Define fig if not passed
if fig == None: fig == 0

Check passed values
f zm <= 0.: raise_ffp_exception(2)
T z0 is not None and umean is None and zO <= 0.: raise_ffp_exception(3)
f h <= 10.: raise_ffp_exception(4)
f zm > h: raise_ffp_exception(5)
f z0 is not None and umean is None and zm <= 12.5*z0:
if rslayer is 1: raise_ffp_exception(6)
else: raise_ffp_exception(12)
T Ffloat(zm)/ol <= -15.5: raise_¥fp_exception(7)
T sigmav <= 0: raise_ffp_exception(8)
if ustar <= 0.1: raise_ffp_exception(9)
f wind_dir is not None:
if wind_dir> 360 or wind_dir < 0: raise_ffp_exception(10)
f nx < 600: raise_ffp_exception(1l)

ArcFootprint for ArcGIS | Page 13

Resolve ambiguity if both zO and umean are passed (defaults to using z0)
if None not in [z0, umean]: raise_ffp_exception(13)

Handle rs

if rs is not None:

Check that rs is a list, otherwise make it a list
if isinstance(rs, numbers.Number):

if 0.9 <rs<=1o0r 90 < rs <= 100: rs = 0.9

rs = [rs]
if not isinstance(rs, list): raise_ffp_exception(14)

If rs is passed as percentages, normalize to fractions of one
if np.max(rs) >= 1: rs = [x/100. for x in rs]

Eliminate any values beyond 0.9 (90%) and inform user
if np.max(rs) > 0.9:

raise_ffp_exception(15)

rs = [item for item in rs if item <= 0.9]

Sort levels in ascending order
rs = list(np.sort(rs))

Model parameters
a = 1.4524

b = -1.9914

c = 1.4622

d = 0.1359

ac = 2.17

bc = 1.66

cc = 20.0

xstar_end = 30
oln = 5000 #limit to L for neutral scaling
k = 0.4 #von Karman

Scaled X* for crosswind integrated footprint
xstar_ci_param = np.linspace(d, xstar_end, nx+2)
xstar_ci_param = xstar_ci_param[1:]

Crosswind integrated scaled F*

fstar_ci_param = a * (xstar_ci_param-d)**b * np.exp(-c/ (xstar_ci_param-d))
ind_notnan ~np.isnan(fstar_ci_param)

fstar_ci_param = fstar_ci_param[ind_notnan]

xstar_ci_param = xstar_ci_param[ind_notnan]

Scaled sig_y*
sigystar_param = ac * np.sqrt(bc * xstar_ci_param**2 / (1 + cc * xstar_ci_param))
Real scale x and f_ci
if z0 is not None:
Use z0
if ol <= 0 or ol >= oln:
xx = (1 - 19.0 * zm/ol)**0.25
psi_f = np.log((1 + xx**2) / 2.) + 2. * np.log((1 + xx) /7 2.) - 2. *
np.arctan(xx) + np.pi/2
elif ol > 0 and ol < oln:
psi_f=-5.3* zm / ol

X = xstar_ci_param * zm / (1. - (zm /7 h)) * (np.log(zm / z0) - psi_¥F)
if np.log(zm /7 z0) - psi_f > O:

ArcFootprint for ArcGIS | Page 14

X

fstar_ci_param / zm * (1. - (zm 7/ h)) /7 (np.log(zm 7/ z0) - psi_¥)

x_ci_max, x_ci, f ci, x_2d, y_2d, ¥ 2d = None

flag_err = 1

else:
Use umean if z0 not available
X = xstar_ci_param * zm / (1. - zm / h) * (umean / ustar * k)
if umean / ustar > O:
X_Ci = X
f ci = fstar_ci_param / zm * (1. - zm / h) / (umean / ustar * k)
else:

x_ci_max, x_ci, f ci, x 2d, y_2d, £ 2d
flag_err = 1

#Maximum location of influence (peak location)
xstarmax = -c / b + d
if z0 is not None:

x_ci_max = xstarmax * zm /7 (1. - (zm 7/ h))
else:

x_ci_max = xstarmax * zm /7 (1. - (zm / h))

#Real scale sig_y
if abs(ol) > oln:
ol = -1§
if ol <= 0: #convective

*

None

(np.log(zm /7 z0) - psi_¥T)

(umean / ustar * k)

scale_const = 1E-5 * abs(zm / ol)**(-1) + 0.80

elif ol > 0: #stable

scale_const = 1E-5 * abs(zm / ol)**(-1) + 0.55

if scale_const > 1:
scale_const = 1.0

sigy = sigystar_param / scale_const * zm * sigmav / ustar

sigy[sigy < 0] = np.nan

#Real scale f(x,y)
dx = x_ci[2] - x_ci[1]

y_pos = np.arange(0, (len(x_ci) / 2.) * dx * 1.5, dx)

#f_pos = np.full((len(f_ci), len(y_pos)), np.nan)

T_pos = np.empty((len(f_ci), len(y_pos)))
f _pos[:] = np.nan
for ix in range(len(f_ci)):

f pos[ix,:] = fci[ix] * 1 7/ (np.sqrt(2 * np.pi) * sigy[ix]) * np.exp(-y_pos**2 / (

sigy[1x]**2))
#Complete footprint for negative y (symmetrical
y_neg = - np.fliplr(y_pos[None, :]1)[O]

f neg = np.fliplr(f_pos)
y = np.concatenate((y_neg[0:-1], y_pos))
f = np.concatenate((f_neg[:, :-1].T, f_pos.T)).

#Matrices for output

)

T

x_2d = np.-tile(x[:,None], (1,len(y))) #creates new array

y_2d
f 2d
£ 2d is the array of distribution values -MAO

np.tile(y.T,(Ien(x),1)) #creates new array
f

Derive footprint ellipsoid incorporating R% of the flux, if requested,

starting at peak value.
dy = dx
if rs is not None:

global xrs

global yrs

xrs and yrs are the LISTS of COORDINATES for each flux footprint

ArcFootprint for ArcGIS | Page 1§

de
the FFP() fu

claring these variables as "global® means that their values persist outside of
nction,
d 1 can manipulate them later using arcpy commands

s = get_contour_levels(f_2d, dx, dy, rs)
= [item[2] for item in clevs]

=0

=0

ix, fr in enumerate(frs):
Xr,yr = get_contour_vertices(x_2d, y_2d, f.2d, fr) # x, y, f, lev
if xr is None:
frs[ix] = None
Xrs.append(xr)
yrs.append(yr)

else:
if crop:

rs_dummy = 0.8 #crop to 80%

clevs = get_contour_levels(f_2d, dx, dy, rs_dummy)

xrs = []

yrs = [1

Xrs,yrs = get_contour_vertices(x_2d, y 2d, f_2d, clevs[0][2])
Crop domain and footprint to the largest rs value
if crop:

Xrs_crop = [x for x in xrs if x is not None]
yrs_crop = [x for x in yrs if x is not None]

if rs is not None:

dminx = np.floor(min(xrs_crop[-1]))

dmaxx = np.ceil(max(xrs_crop[-1]))

dminy = np.floor(min(yrs_crop[-1]))

dmaxy = np.ceil(max(yrs_crop[-1]))
else:

dminx = np.floor(min(xrs_crop))

dmaxx = np.ceil(max(xrs_crop))

dminy = np.floor(min(yrs_crop))

dmaxy = np.ceil(max(yrs_crop))
jrange = np.where((y_2d[0] >= dminy) & (y_2d[0] <= dmaxy))[O]
jrange = np.concatenate(([jrange[0]-1], jrange, [Jjrange[-1]+1]))
jrange = jrange[np.where((jrange>=0) & (jrange<=y 2d.shape[0]-1))[0]1]
irange = np.where((x_2d[:,0] >= dminx) & (x_2d[:,0] <= dmaxx))[0]
irange = np.concatenate(([irange[0]-1], irange, [irange[-1]+1]))
irange = irange[np.-where((irange>=0) & (irange<=x_2d.shape[1]-1))[0]1]
jrange = [[it] for it in jrange]
x_2d = x_2d[irange, jrange]
y_2d = y_2d[irange, jrange]
f _2d = f_2d[irange, jrange]

#Rotate 3d footprint if requested

if wind_dir is not None:

wind

_dir = wind_dir * np.pi / 180.

dist = np.sqrt(x_2d**2 + y_2d**2)

angl
x_2d
y_2d

ifr

e = np.arctan2(y_2d, x_2d)
dist * np.sin(wind_dir - angle)
dist * np.cos(wind_dir - angle)

s is not None:
for ix, r in enumerate(rs):
xr_lev = np.array([x for x in xrs[ix] if x is not None])
yr_lev = np.array([x for x in yrs[ix] if x is not None])
dist = np.sgrt(xr_lev**2 + yr_lev**2)
angle = np.arctan2(yr_lev,xr_lev)
xr = dist * np.sin(wind_dir - angle)
yr = dist * np.cos(wind_dir - angle)
xrs[ix] = list(xr)

ArcFootprint for ArcGIS | Page 16

yrs[ix] = list(yr)

Fill output structure
if rs is not None:
return {"x_ci_max": x_ci_max, "x ci": x ci, "fci": f_ci,
"x 2d": x 2d, "y 2d": y 2d, "f 2d": f_2d,
" rs, "fr°: frs, "xr": xrs, "yr": yrs, “"flag_err-:flag_err}

rsT:
else:
return {"x_ci_max": x_ci_max, "x ci": x ci, "fci": f_ci,
"x 2d": x 2d, "y 2d": y 2d, "f 2d": ¥ 2d, "flag_err":flag_err}

def get_contour_levels(f, dx, dy, rs=None):
"""Contour levels of f at percentages of f-integral given by rs
import numpy as np
from numpy import ma

#Check input and resolve to default levels in needed
if not isinstance(rs, (int, float, list)):
rs = list(np.linspace(0.10, 0.90, 9))
if isinstance(rs, (int, float)): rs = [rs]
Important! The matplotlib. _cntr function runs using

#I(;(Ie\ée;s_ np.empty(len(rsy) matplotlib version 1.5.2 or earlier; | had to uninstall
Eclexs[:] E-np?n;n Anaconda from my machine in order to get the
ars = np.empty(len(rs)) script to reference the correct ArcMap version.
ars[:] = np.nan (This bug alone took up days/weeks of my time.)

st = np.sort(f, axis=None)[::-1]
msf = ma.masked_array(sf, mask=(np.isnan(sf) | np.isinf(sf))) #Masked array for
handling potential nan

csTt = msf._cumsum() . Filled(np.nan)*dx*dy
for ix, r in enumerate(rs):
dcsf = np.abs(csf - r)
pclevs[ix] = sf[np.nanargmin(dcsf)]
ars[ix] = csf[np.nanargmin(dcsf)]

return [(round(r, 3), ar, pclev) for r, ar, pclev in zip(rs, ars, pclevs)]

def get_contour_vertices(x, y, F, lev):
import matplotlib._cntr as cntr

c = cntr.Cntr(x, y,) # uses x_2d, y_2d, ¥ 2d as inputs for drawing contours
nlist = c.trace(lev, lev, 0) # nlist is the raw, but nested, list of the coordinates
I want

segs = nlist[:len(nlist)//2] # the "'//" divides two floats but truncates the
remainder

N = len(segs[O][:, OD)

Xr [segs[0][ix, 0] for ix in range(N)]

yr [segs[0][ix, 1] for ix in range(N)]

return [xr, yr] # X,y coords of contour points, removed from their nested list-in-a-
list

m
H
7

exTypes = {"message”: "Message~,
“alert™: "Alert”,
“error®: “Error-,
"fatal®: "Fatal error"}

exceptions = [

ArcFootprint for ArcGIS | Page 17

{"code": 1,
"type": exTypes["fatal"],
"msg”: "At least one required parameter is missing. Please enter all *
"required inputs. Check documentation for
details."},
{"code": 2,
"type": exTypes[-"fatal"],
"msg”: "zm (measurement height) must be larger than
zero."},
{"code": 3,
"type": exTypes[-"fatal"],
"msg”: "z0 (roughness length) must be larger than
zero."},
{"code": 4,
"type": exTypes[-"fatal"],
"msg”": "h (BPL height) must be larger than 10m."},
{"code": 5,
"type": exTypes["fatal"],
"msg”: "zm (measurement height) must be smaller than h (PBL
height)."},
{"code": 6,
"type": exTypes[alert"],
"msg”: "zm (measurement height) should be above the roughness sub-layer (12.5*z0)."},
{"code": 7,
"type": exTypes["fatal"],
"msg”: "zm/ol (measurement height to Obukhov length ratio) must be equal or larger
than -15.5"},
{"code": 8,
"type": exTypes["fatal"],
"msg”: "sigmav (standard deviation of crosswind) must be larger than zero"},
{"code": 9,
"type": exTypes[“error"],
"msg”: “ustar (friction velocity) must be >=0.1."},
{"code": 10,
"type": exTypes["fatal"],
"msg”: "wind_dir (wind direction) must be >=0 and <=360."},
{"code": 11,
"type": exTypes[“error"],
"msg": "nx must be >=600."},
{"code": 12,
"type": exTypes[“alert"],
"msg®: "Using zO, ignoring umean."},
{"code": 13,
"type": exTypes[“error"],
"msg®: "zm (measurement height) must be above roughness sub-layer (12.5*z0)."},
{"code": 14,
"type": exTypes[~"fatal"],
"msg”: "if provided, rs must be in the form of a number or a list of numbers."},
{"code": 15,
"type": exTypes[“alert"],
"msg”: "rs value(s) larger than 90% were found and eliminated."},

1

def raise_ffp_exception(code):
"""Raise exception or prints message according to specified code"""

ex = [it for it in exceptions if it["code”] == code][O0]
string = ex["type"] + “(" + str(ex["code"]).zFfill(4) + "):\n "+ ex["msg”]

print(™*")

if ex["type"] == exTypes["fatal"]:
string = string + "\n FFP_fixed_domain execution aborted."
raise Exception(string)

else:
print(string)

ArcFootprint for ArcGIS | Page 18

B L
R T T R T T T R R T T T T R R T TR T T R T

Import necessary modules
import arcpy, traceback

try:

HHH##HHHE Define inputs and outputs ##H#HHH#H#H#HHHE
erase any intermediate files in-memory from previous executions of this tool
arcpy.Delete_management(*in_memory')

inputShape = arcpy.GetParameterAsText(0) # user-defined measurement location
nameOfOutputShapefile = arcpy.GetParameterAsText(1l) # footprint shapefile to be
generated

Footprint estimation model parameters

measureHeight = float(arcpy.GetParameterAsText(2)) # measurement height (m)

meanWind = float(arcpy.GetParameterAsText(3)) # mean wind speed

sdlatflux = float(arcpy.GetParameterAsText(4)) # stdev of lateral flux

windrx = int(arcpy-GetParameterAsText(5)) # mean wind direction

olength = -40.00 # very much an approximation... to be better constrained in future
versions

season = arcpy.GetParameterAsText(6)# used to estimate height of the atmospheric
boundary layer
seasondictionary = {"Summer (June, July, Aug)': 1000,
"Fall (Sept, Oct, Nov)": 600,
"Winter (Dec, Jan, Feb)': 300,
"Spring (March, April, May)": 1200,
"Unknown':775} # look up average values of boundary layer height
PBLH = float(seasondictionary[season]) # returns the boundary layer height value as a
number

sourceregions = arcpy.GetParameterAsText(7) # user checks one or more 'percent source
region" to generate

valuelList = [x.strip() for x in sourceregions.split(*;"™)] #splits single-string input
into a list of strings

sourcelList = [float(i) for i in valuelList] # converts each item in the list from a
string to a float

Print model parameters to text file?
ischecked = arcpy.GetParameterAsText(8) # Boolean true or false
resultLogFile = arcpy.GetParameterAsText(9) # fTile path of output text file

text block to print model parameters to the ArcMap window
modelParams = str(*'MODEL PARAMETERS USED: \n" +

"Measurement height: "™ + str(measureHeight) + "™ m \n" +

"Mean wind speed: " +str(meanWind) + " m/s \n" +

"Standard deviation of lateral wind: " +str(sdlatflux) + "™ m/s \n" +
"Mean wind direction: " +str(windrx) + " degrees \n" +

"Obukov length: " +str(olength) + "\n" +

"Season of measurement: " +str(season) + "\n" +

"Planetary boundary layer height: " +str(PBLH) + " m \n" +

""Source regions: " +str(sourceregions) + " percent \n')

arcpy -AddMessage (modelParams)

#H#HHH#H#H Run FFP with user-defined parameters ###H#H##H#HE
FFP(zm=measureHeight, umean=meanWind, h=PBLH, ol=olength, sigmav=sdlatflux, ustar=0.53,
wind_dir=windrx, rs=sourcelList)

#H##H# Define X,Y coordinates of the input point-of-interest ####HHH#HHHHH

ArcFootprint for ArcGIS | Page 19

NOTE that input should only contain ONE point feature.
1T not, script will only capture coordinates of last feature in the attribute table
for rowx in arcpy.da.SearchCursor(inputShape, [''SHAPE@X"]):
originx = rowx[0] # returns number as Double
for rowy in arcpy.da.SearchCursor(inputShape, [''SHAPE@Y"]):

originy = rowy[O]

Define CRS of the input point
IMPORTANT - Input MUST use a projected, planar coordinate system!
spatial_ref = arcpy.Describe(inputShape) .spatialReference

print information on input point to ArcMap window
pointinfo= str("Measurement Location Coordinates X: "+str(originx)+" Y: "+str(originy)+
"\n" +
"CRS of input point: "+str(spatial_ref.name)+ '"\n" +
“Linear unit: "+ str(spatial_ref._linearUnitName)+ '\n"")
arcpy -AddMessage(pointinfo)

#H#HA# Initialize list of XY coordinates **relative to a (0,0) origin** ###HHH#HHH#HE
NOTE: list must be in correct order for eventual line-drawing.

Initialize 2 empty lists, a.k.a. containers to hold translated X and Y values
newxshapes N
newyshapes N

TRANSLATE each footprint vertex relative to the inputShape

1T input point CRS uses meters, proceed with arithmetic
if spatial_ref._metersPerUnit == 1.0:
for boundary in xrs: # for each requested footprint outline...
boundxlist = []
for vertex in boundary: # for each vertex in a given footprint outline. ..
newx = originx + vertex # returns number as Double
boundxlist.append(newx) # append translated X-value to list
newxshapes .append(boundxlist)
for boundary in yrs: # for each requested footprint outline...
boundylist = []
for vertex in boundary: # for each vertex in a given footprint outline. ..
newy = originy + vertex
boundylist.append(newy) # append translated Y-value to list
newyshapes .append(boundylist)
IFf the coordinate system uses a linear unit *other than meters*
else:
conversion = float(spatial_ref._metersPerUnit) # save a factor to convert other-
units to meters
for boundary in xrs: # for each requested footprint outline...
boundxlist = []
for vertex iIn boundary: # for each vertex in a given footprint outline...
newx = originx + (vertex / conversion) # returns number as Double
boundxlist._append(newx) # append translated X-value to list
newxshapes.append(boundxlist)
for boundary in yrs: # for each requested footprint outline...
boundylist = []
for vertex iIn boundary: # for each vertex in a given footprint outline...
newy = originy + (vertex / conversion)
boundylist._append(newy) # append translated Y-value to list
newyshapes.append(boundylist)

Initialize an empty list to contain coordinate *pairs* (X,Y) for each feature
listoffeatures = []

zip the two lists of translated X and Y values into one list of tuples where each
tuple is a (X,Y) coordinate pair
for 1, J in zip(newxshapes, newyshapes):

ArcFootprint for ArcGIS | Page 20

zippedfeature = zip(i,J)
listoffeatures.append(zippedfeature)

#H###H Draw the footprint ellipses based upon coordinate palrs ###H#H#H I
Initialize a list that will hold each of the Polyline objects, one for each footprint
PolylineObjectList = []

Create a Polyline object for each requested footprint
Append to the list of Polyline objects
for feature in listoffeatures:

PolylineObjectList.append(arcpy.Polyline(arcpy.Array([arcpy.Point(*coords) for
coords in feature]), spatial_ref))

turn each ellipse in my list of polylines into a polygon,
and save the polygon in memory with arbitrary filename
arcpy.-env.workspace = "in_memory"
for 1 in range(len(PolylineObjectList)):
arcpy.FeatureToPolygon_management(PolylineObjectList[i],
"in_memory/polygon*+str(i))

Create list of each individual polygon footprint 1 generated, and merge into one
shapefile

polys = arcpy.ListFeatureClasses(*'polygon*')

mergedpolys = "in_memory/mergedpolys"

arcpy -Merge_management(polys, mergedpolys)

#H#H##H Edit attributes of final polygon output ####HH#HE
Add attribute for each footprint®s area, calculated from polygon®s shape
arcpy-AddField_management(mergedpolys, "footptAREA™, "FLOAT™)

arcpy.CalculateField_management(mergedpolys, "footptAREA"™, "float(!SHAPE.areal)",
"PYTHON')

#SORT THE FEATURES FROM LARGEST TO SMALLEST (based on area), so smaller footprints draw
on top of larger ones! (90, 70, etc)

mergedsorted = ""in_memory/mergedsorted”

arcpy-Sort_management(mergedpolys, mergedsorted, [["footptAREA™, "DESCENDING']])

Add attribute "src_pct" to display the percent source region each polygon represents
sourcelListRev = sourceList[::-1] # make reversed-order copy of sourcelList, so it too
uses a descending order (90, 70, etc)
arcpy.-AddField_management(mergedsorted, ''src_pct', "LONG™)
pointer = 0 # used to iterate over the "sourceListRev® list
with arcpy.da.UpdateCursor(mergedsorted, ''src_pct') as cursor:
for row In cursor:
row[0] = int(sourceListRev[pointer]) # assign each feature®s "src_pct"”
attribute the corresponding value in sourceListRev
pointer += 1
cursor . updateRow(row)
del row
del cursor

Add attribute "obs_point"™ to record the name of the measurement location shapefile
each footprint is based on (for record-keeping)
arcpy-AddField_management(mergedsorted, ‘‘obs_point', "TEXT"™)
rows = arcpy.UpdateCursor(mergedsorted)
for row in rows:
row.setValue(obs_point", str(inputShape))
rows .updateRow(row)
del row
del rows

Save final footprint polygons, with attributes, to user-specified filepath

ArcFootprint for ArcGIS | Page 21

arcpy .CopyFeatures_management(mergedsorted, nameOfOutputShapefile)
arcpy -AddMessage("'Output footprint shapefile: \t" + nameOfOutputShapefile + "\n'")

#H###HE Write model parameters to a text file, 1T user checked the box ####H##HH#H#
if str(ischecked) == "true”:
import datetime
systime = str(datetime.datetime.now())
s = str(nameOfOutputShapefile+" footprint created at '+systime) # system timestamp
when tool is executed
f = open(resultLogFile,"a")
f.write(modelParams) # write the model parameters from beginning of script
f.write(pointinfo) # write information on measurement location from beginning of
script
f.write(s)
arcpy .-AddMessage(""Model parameters saved to text file.")

Delete intermediate files in temporary workspace

arcpy.Delete_management(*in_memory')

except Exception as e:
1T unsuccessful, end gracefully by indicating why
arcpy.-AddError("\n" + "Script failed because: \t\t" + e.message)

... and where
exceptionreport = sys.exc_info()[2]
fullermessage = traceback. format_tb(exceptionreport)[0]

arcpy.AddError(“'at this location: \n\n" + fullermessage + '"\n"")

R T T T R R T R T T R T T TR T R T

	Introduction
	What is a flux footprint?
	Goals of this project

	Methods
	Simplified flowchart of ArcFootprint method

	Tool inputs
	Tool outputs
	Background outputs (not shown to user)
	User outputs

	Other tool features
	Polygon drawing order to maximize visibility
	Auto-conversion of linear units

	Demonstration 1: Yellowstone flux tower
	Demonstration 2: New Haven drone
	Limitations and next steps
	1) Very approximate BLH estimates within the Kljun model, and only for northern hemisphere.
	2) Output footprints have no metadata.
	3) User must calculate wind variables (mean direction, SD of speed) themselves.

	Annotated script

